PLC CONNECTION MANUAL

RKC Instrument Inc. CB/REX-F/LE100 Series (RKC protocol)

Reading the Device/PLC Connection Manual

This additional manual provides connection information for the RKC Instrument Inc. CB, REX-F or LE100 Series (RKC protocol) models, and is a supplement to the LT Editor and GP-PRO/PBIII for Windows Device/PLC Connection Manual.

Please refer to this data when connecting a RKC Instrument Inc. CB, REX-F or LE100 Series (RKC protocol) unit.

For information concerning general type PLC connections and this document's documentation conventions, please refer to your Device/PLC Connection manual.

When connecting a Factory Gateway unit, please substitute the words "Factory Gateway" for this document's "LT/GLC/GP".

The information in this document will be included in the next version of the Device/PLC Connection manual. Therefore, please consider this a provisional document.

Installation

This CD-ROM includes all the driver files required by the LT/GLC/GP to communicate with a CB, REX-F or LE100 Series (RKC protocol). This document assumes that one or more of the following software applications are already installed on your PC. Please note that if more than one of these applications are installed, the screen and data transfer files included in this CD-ROM must be installed in each of those applications.

For information about the installation of the software, refer to that software's Operation Manual.

- Software Applications
- LT Editor Ver.1.0 or later
- GP-PRO/PBIII for Windows Ver.5.0 or later
- Pro-server with Pro-Studio for Windows Ver.3.0 or later*1
- 1) Confirm that the Screen Editor software is installed on your hard drive.
- 2) Double-click on the "cb_rkc.exe" file contained in the CD-ROM.
- **3**) Once the set up program starts, follow the instructions given in the installation program.

When using the CB, REX-F or LE100 Series (RKC protocol), select [RKC CB/REX-F/LE100(RKC)] for the "PLC Type".

When using GP-PRO/PBIII for Windows Ver.6.0 or later, click on the Device/PLC area's [other] selection and then click on [RKC CB/REX-F/LE100(RKC)].

^{*1} When using the Factory Gateway unit, GP-Web Ver. 1.0 or later, or GP-Viewer Ver. 1.0 or later, be sure to select the Pro-Server with Pro-Studio for Windows folder as the "Destination Folder".

RKC INSTRUMENT INC. Controllers

System Structure

The following describes the system configuration used when connecting the GP/ GLC/LT to an RKC Controller.

· GP/GLC/LT's System Area (LS0 to LS19) Settings

The GP/GLC/LT's system area (20 words) cannot be allocated to the Controller's own data area. When you are entering the system area settings via the screen editor software or via the GP/ GLC/LT's OFFLINE screen, be careful that you do not use the Controller's own data area.

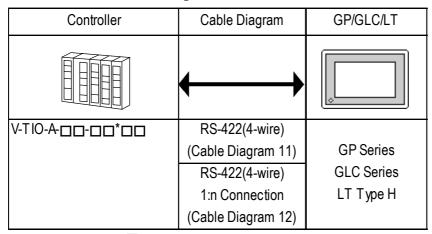
■ CB Series (Modbus protocol)

Controller	Cable Diagram	GP/GLC/LT
	+	
CB100 Z-1021 CB400 Z-1021	RS-422(2-wire) (Cable Diagram 3)	GP Series
CB500 Z-1021 CB700 Z-1021 CB900 Z-1021 (Applicable for Modbus Protocol)	RS-422(2-wire) 1:n connection (Cable Diagram 5)	GLC Series LT Type H

■ **SR-Mini Series** (Modbus protocol)

Controller	Cable Diagram	Cables	GP/GLC/LT
	—		
H-PCP-AZ-1021	RS-232C (Cable Diagram 1)	RKC's	
	RS-422(4-wire)	W-BF-01-□□□□ *1	GP Series
	(Cable Diagram 2)		GLC Series
	RS-422(4-wire)	RKC's	LT Type H
	1:n Connection	W-BF-01-	
	(Cable Diagram 4)	W-BF-02-□□□□	

^{*1} $\square\square\square\square$ indicates the cable length (mm).


■ SRX Series (Modbus protocol)

Controller	Cable Diagram	GP/GLC/LT
		
X-T IO-A-	RS-422(4-wire)	
	(Cable Diagram 11)	GP Series
	RS-422(4-wire)	GLC Series
	1:n Connection	LT Type H
	(Cable Diagram 12)	

^{*1} The model data "□" will vary depending on the type of option.

For detailed temperature Controller information, refer to that unit's catalog.

■ **SRV Series** (Modbus protocol)

^{*1} The model data " \square " will vary depending on the type of option.

For detailed temperature Controller information, refer to that unit's catalog.

■ **CB Series** (RKC protocol)

Controller *1	Cable Diagram	GP/GLC/LT *2
	-	
CB100 *5/	RS-422(2-wire)	
CB400*5/_	(Cable Diagram 6)	GP Series
CB500 * 5 _ / _	RS-422(2-wire)	GLC Series
CB700*5/_	1:n Connection	LT Type H
CB900 * 5 _ / _	(Cable Diagram 7)	

- *1 The model data " \square " will vary depending on the type of option. For detailed temperature Controller information, refer to that unit's catalog. Units that have an option of serial data transfer will have a "5" in their model code.
- *2 This unit can be used with GP-377 Series, GP77R Series, GP2000 Series, GLC2000 Series, and LT TypeC Units.

■ **REX-F Series** (RKC protocol)

Controller *1	Cable Diagram	GP/GLC/LT *2
		
F400	RS-232C	
F700	(Cable Diagram 8)	
F400 🗆 🗆 🗆	RS-422(4-wire)	
F700 🗆 🗆 🗆 - 🗆 - 🗆 - 4 🗆	(Cable Diagram 9)	
F900 🗆 🗆 🗆	RS-422(4-wire)	GP Series
	1:n Connection	GLC Series
	(Cable Diagram 10)	LT Type H
F400 🗆 🗆 🗆 - 🗆 - 🗆 - 4 🗆	RS-422(2-wire)	
F700 🗆 🗆 🗆 - 🗆 - 🗆 - 4 🗆	(Cable Diagram 6)	
F900 🗆 🗆 🗆	RS-422(2-wire)	
	1:n Connection	
	(Cable Diagram 7)	

^{*1} The model data " \square " will vary depending on the type of option.

For detailed temperature Controller information, refer to that unit's catalog. Serial data transfer option types use a "1" for RS-232C, "4" for RS-422 - 4 wire, and "5" for RS-422 - 2 wire.

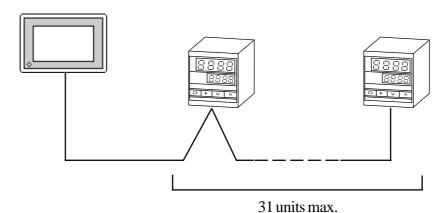
^{*2} This unit can be used with GP-377 Series, GP77R Series, GP2000 Series, GLC2000 Series, and LT TypeC Units.

■ LE-100 Series (RKC protocol)

Controller *1	Cable Diagram	GP/GLC/LT *2
		
LE100*_5	RS-422(2-wire)	
	(Cable Diagram 6)	GP Series
	RS-422(2-wire)	GLC Series
	1:n Connection	LT Type H
	(Cable Diagram 7)	


- *1 The model data "□" will vary depending on the type of option.

 For detailed temperature Controller information, refer to that unit's catalog.


 Units that have an option of serial data transfer will have a "5" in their model code.
- *2 This unit can be used with GP-377 Series, GP77R Series, GP2000 Series, GLC2000 Series, and LT TypeC Units.

♦ Connections

•1:1 connection

•1:n connection

(Max. with SR-Mini Series units is 16 units)

12.4.2 Cable Diagrams

The cable diagrams shown below and the cable diagrams recommended by RKC INSTRUMENT INC. may differ, however, using these cables for your Controller's operations will not cause any problems.

- When connecting the FG terminal to the connector cover, be sure that the connector cover conducts current.
- Ground your Controller's FG terminal according to your country's applicable standard. For details, refer to your Controller's manual.
- When connecting a cable's Shield line to an FG terminal, consider the needs of your system when deciding which side of the cable (GP/GLC or Controller) to connect. (The example below connects to the Controller's FG terminal.)

■ CB Series

- Up to 31 CB Series units can be connected to a single GP/GLC/LT.
- If a communications cable is used, be sure to connect its SG (signal ground) terminal.
- The following RS-422 cable is recommended.

Company	Item No.	Туре
Hirakawa Densen	2207-510-008	CO-HC-ESV-3P X 7/0.2

 The Controller terminal number will differ depending on the type of CPU used. The following examples reflect all the CB Series units supported by the Digital Electronics Corporation.

<CB100,CB400,CB500,CB900>

Terminal No.	Signal Name
13	SG
14	T/R(A)
15	T/R(B)

<CB700>

Terminal No.	Signal Name
7	SG
8	T/R(A)
9	T/R(B)

■ SR-Mini Series

- Up to 16 SR-Mini Series modules can be connected to a single GP/GLC/LT.
- If a communications cable is used, be sure to connect its SG (signal ground) terminal.
- RS-232C cables should be 15 meters or less.
- RS-422 (2-wire) cables should be 500 meters or less.
- The following RS-422 cables are recommended for SR-Mini Series units.

Company	Туре	Comments
RKC INSTRUMENT INC.	W-BF-01- XXXX *1	Used when connecting an SR-Mini to a LT/GLC/GLC
RKC INSTRUMENT INC.	W-BF-02- XXXX *1	Used when connecting an SR-Min to an SR-Mini

^{*1} XXXX indicates the cable length (mm).

■ REX-F Series

- Up to 31 REX-F Series units can be connected to a single GP/ GLC/LT.
- Connect the shield to the GP/GLC/LT's FG terminal.
- If a communications cable is used, be sure to connect its SG (signal ground) terminal.
- RS-232C cables must be 15 meters or less.
- RS-422 cables must be 600 meters or less.
- With REX-F Series units, the terminal numbers and signal names will vary, depending on the unit's model type and data transfer method used. The following tables show the possible model type and signal name combinations.

▶ RS-232C Connections

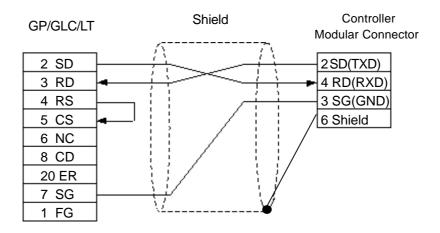
Terminal No.		Signal Name	
F400 F700 F900		Olgilai Mailic	
12	16	26	SG
13	17	27	SD
14	18	28	RD

▶ RS-422 (2-wire) Connections

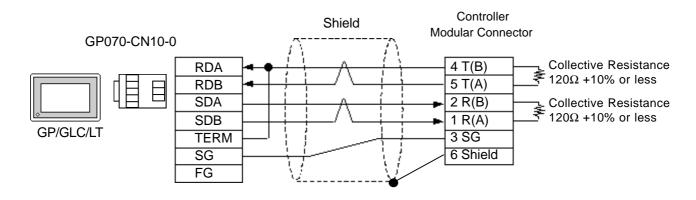
Terminal No.		Signal Name	
F400 F700 F900		Olgilai Maille	
12	16	26	SG
13	17	27	T/R(A)
14	18	28	T/R(B)

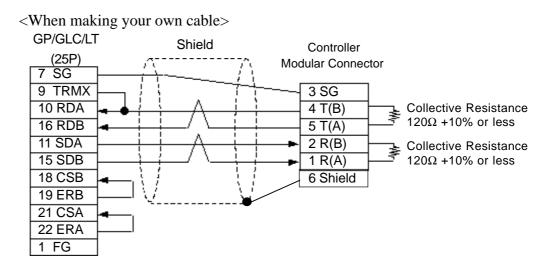
♦ RS-422 (4-wire) Connections

	Signal Name		
F400	F700	F900	Olgilai Mailic
12	16	26	SG
13	17	27	T(A)
14	18	28	T(B)
15	19	29	R(A)
16	20	30	R(B)

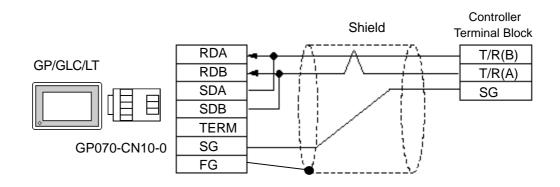

■ LE100 Series

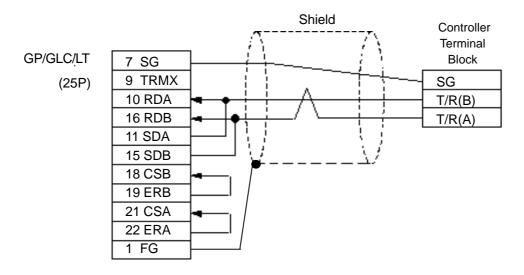
- Up to 31 LE100 Series units can be connected to a single GP/ GLC/LT.
- Connect the shield to the GP/GLC/LT's FG terminal.
- If a communications cable is used, be sure to connect its SG (signal ground) terminal.
- RS-422 cables must be 600 meters or less.
- LE100 Series data transfer signal names are as follows:


Terminal No.	Signal Name
1	T/R(A)
2	T/R(B)
3	SG


Cable Diagram 1 (1:1) RS-232C

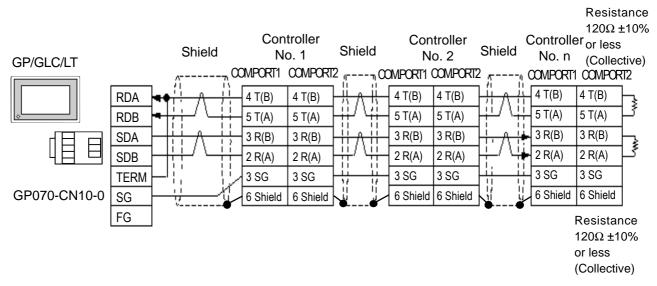
Cable Diagram 2 (1:1) RS-422 4-Wire


<When using Digital's RS-422 connector terminal adapter GP070-CN10-0>

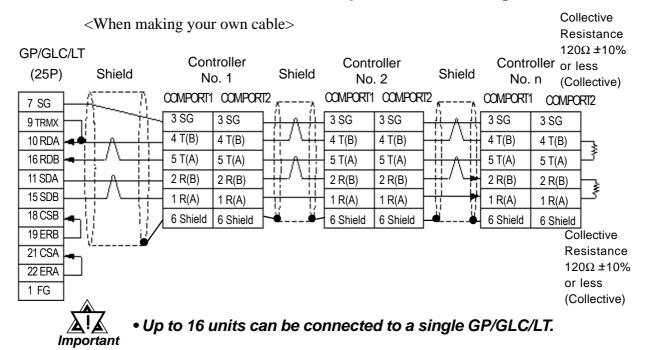


Cable Diagram 3 (1:1) RS-422 2-Wire

<When using Digital's RS-422 connector terminal adapter GP070-CN10-0>

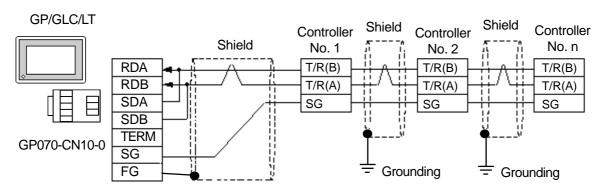


<When making your own cable>

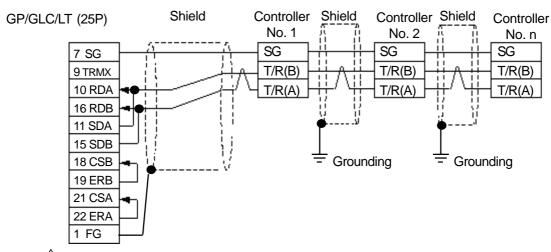


Cable Diagram 4 (1:n) RS-422 4-Wire

<When using Digital's RS-422 connector terminal adapter GP070-CN10-0>



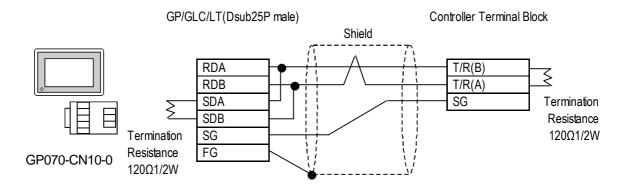
Chapter 12 - Indicating Controllers



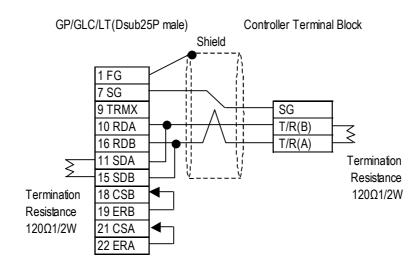
Cable Diagram 5 (1:n) RS-422 2-Wire

<When using Digital's RS-422 connector terminal adapter GP070-CN10-0>

<When making your own cable>

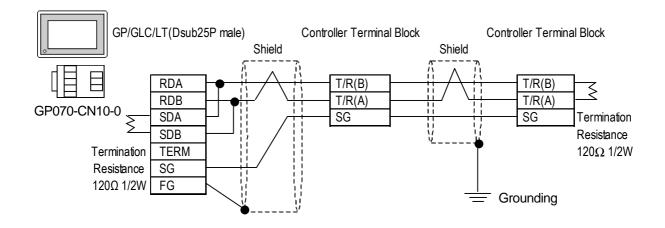


Important


Up to 31 units can be connected to a single GP/GLC/LT.

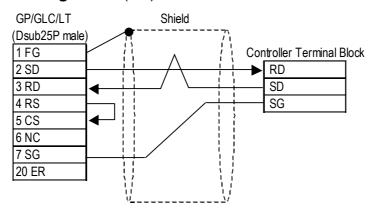
Cable Diagram 6 (1:1) RS-422 2-Wire

<When using Digital's RS-422 connector terminal adapter GP070-CN10-0>

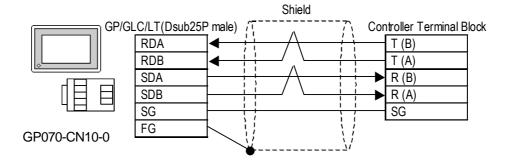


<When making your own cable>

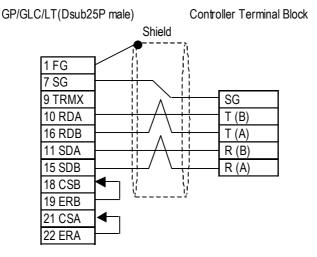
Cable Diagram 7 (1:n) RS-422 2-Wire


<When using Digital's RS-422 connector terminal adapter GP070-CN10-0>

<When making your own cable>

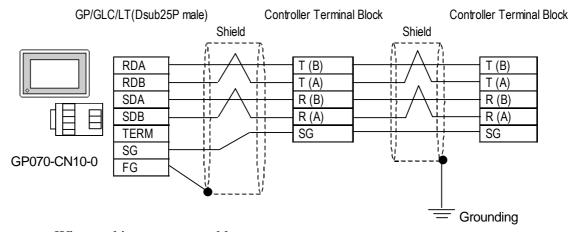


Cable Diagram 8 (1:1) RS-232C

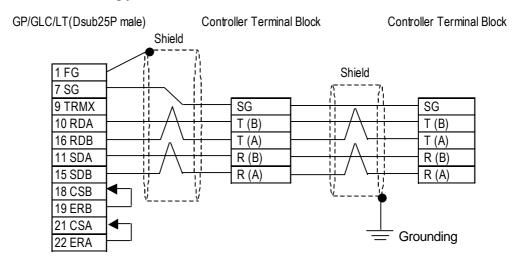


Cable Diagram 9 (1:1) RS-422 4-Wire

<When using Digital's RS-422 connector terminal adapter GP070-CN10-0>



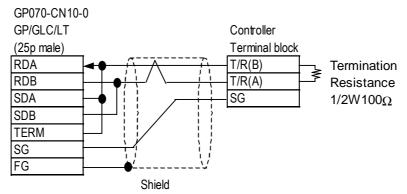
<When making your own cable>

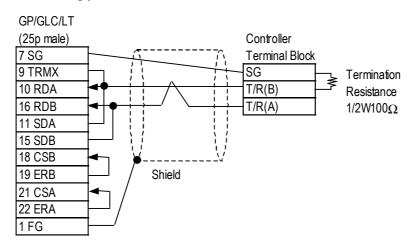


Cable Diagram 10 (1:n) RS-422 4-Wire

<When using Digital's RS-422 connector terminal adapter GP070-CN10-0>

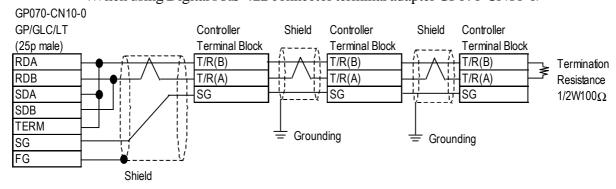
<When making your own cable>

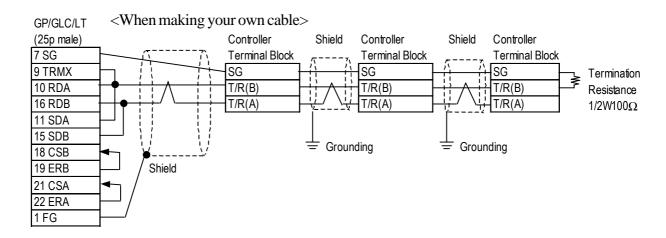



• Up to 31 units can be connected to a single GP/GLC/LT.

Cable Diagram 11 (1:1) RS-422 4-Wire

<When using Digital's RS-422 connector terminal adapter GP070-CN10-0>




<When making your own cable>

Cable Diagram 12 (1:n) RS-422 4-Wire

<When using Digital's RS-422 connector terminal adapter GP070-CN10-0>

Important

• Up to 31 units can be connected to a single GP/GLC/LT.

12.4.3 Supported Devices

The following list shows the range of devices supported by the GP/GLC/LT.

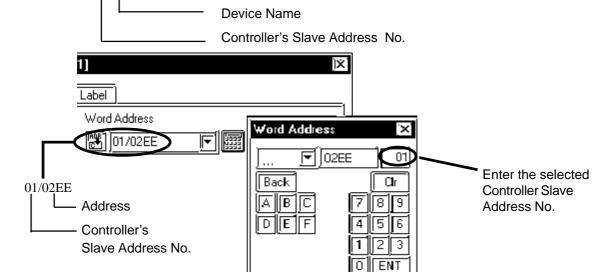
■ CB Series / SR-Mini Series (Modbus protocol)

Device	Bit Address	Word Address	Comments
Data	0000 ~ 02EEF	0000 ~ 02EE	L/H

GP/GLC/LT's System Area (LS0 to LS19) Settings

The GP/GLC/LT's system area (20 words) cannot be allocated to the Controller's own data area. When you are entering the system area settings via the screen editor software or via the GP/ GLC/LT's OFFLINE screen, be careful that you do not use the Controller's own data area.

• The data communication feature will not operate when the slave address No. is set to "0". (The default value is 0.)


Indicating Controller Slave Address settings can be entered in your screen editor software. If a station number is not indicated, the previously entered station number is automatically used. (The default value is 1.)

E.g. When entering Device Address 02EE

01 ... 02EE

Enter the Device Name "...", and the Word Address "02EE".

Word Address

♦SRX Series

Device	Bit Address	Word Address	Remarks	
	000000~3FFF	0000~03FF		
	04000~07FFF	0400~07FF		
	08000~0883F	0800~0883		L/H
	10000~13FFF	1000~13FF		L/I1
	14000~17FFF	1400~17FF		
	18000~1883F	1800~1883		

♦SRV Series

Device	Bit Address	Word Address	Remarks	
	00000~03FFF	0000~03FF		
	08000~0881F	0800~0881		1 // 1
	10000~13FFF	1000~13FF		L/H
	18000~1881F	1800~1881		

- GP unit internal processing allocates 1024 words to each device. For this reason, the following features, which require more than one block, cannot be used. When wishing to use these functions, be sure to set them up so that they do not exceed one block.
 - 1) Specifying the read area.
 - 2) Specifying an a tag.
 - 3) 2-Way block read/write (Pro-Server, GP-Web etc).
 - ex. In Pro-Server, it is not possible to perform a blockread of 20 words, starting from "03F9".
- When a tag that will read controller discontinuous addresses is placed on a screen, the GP unit groups the addresses and does a block read of these addresses.

When this happens, a "Host Communication" error (02:02:**) occurs in the GP unit where the discontinuous addresses could not be read. (These addresses may have been unusable by the controller.)

To prevent this, specify the screen editor's [Options | Discontinuous Address Compensation Value] as 1. Also, specify the read tag's address interval as 2 words.

■ CB Series / REX-F Series / LE100 Series (RKC protocol)

♦ CB Series

Device	Bit Address	Word Address	Comments	
СВ	CB00000~CB0036F	CB0000~CB0036		H/L

♦ REX-F Series

Device	Bit Address	Word Address	Comments	
REX	REX00000~REX0055F	REX0000~REX0055		H/L

♦ LE100 Series

Device	Bit Address	Word Address	Comments	
LE	LE00000~LE0070F	LE0000~LE0070		H/L

GP/GLC/LT's System Area (LS0 to LS19) Settings

The GP/GLC/LT's system area (20 words) cannot be allocated to the Controller's own data area. When you are entering the system area settings via the screen editor software or via the GP/GLC/LT's OFFLINE screen, be careful that you do not use the Controller's own data area.

 Indicating Controller identifier data contains data to the right of the decimal point. This decimal point data is handled by the GP/GLC/LT as follows:

■ When reading out data

Data read out by the Indicating Controller is handled as integer data.

EX. With a value of 100.0:

Indicating Controller: 100.0 GP/GLC/LT: 1000

When displaying decimal point data in a numeric display, use the [Display Data Format] area's [Decimal Places] setting. In this example, only the first decimal place is used, so this setting should be "1". Now, the data will be handled correctly.

EX. With a value of 100.0:

Indicating Controller: 100.0 GP/GLC/LT: 100.0

Depending on the designated address, decimal point will be handled internally as follows:

When the Device List Address is designated with no changes:

no decimal point data is used

When 0x1000 is added to the Device List Address:

one (1) decimal point integer is used

When 0x2000 is added to the Device List Address:

two (2) decimal point integers are used

When 0x3000 is added to the Device List Address:

three (3) decimal point integers are used

Depending on the Address designation method used, the GP/GLC/LT's data will be as follows:

Indicating	GP/GLC/LT Data				
Controller Data	No change to	Adding 0x1000 to	Adding 0x2000 to	Adding 0x3000 to	
Controller Data	Address data	the Address	the Address	the Address	
123	123	1230	12300	23000	
123.4	123	1234	12340	23400	
12.34	12	123	1234	12340	
1.234	1	12	123	1234	

If the address designation method and the Indicating Controller data's decimal point position are not the same, the address' decimal data will be either cut off or replaced with a "0".

When decimal data becomes larger than 5 digits, the left-most digit(s) will be cut.

EX. If "1122334" is used, the number will become "22334".

■ When writing data

When writing data to an Indicating Controller, data must be integers.

Depending on the designated address, the decimal point will be handled internally as follows:

When the Device List Address is designated with no changes:

no decimal point data is used

When 0x1000 is added to the Device List Address:

one (1) decimal point integer is used

When 0x2000 is added to the Device List Address:

two (2) decimal point integers are used

When 0x3000 is added to the Device List Address:

three (3) decimal point integers are used

EX. 1) When writing "100.0" to the CB Series unit's Alarm 1 Setting (A1)

GP/GLC/LT's address value: 0x1007

GP/GLC/LT's write value: 1000

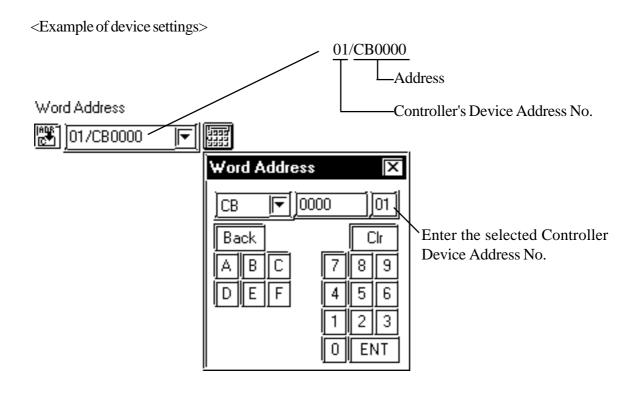
EX. 2) When writing "100" to the CB Series unit's Alarm 1 Setting (A1)

GP/GLC/LT's address value: 0x0007

GP/GLC/LT's write value: 100

Depending on the Address designation method used, the Indicating Controller's write data will be as follows:

	Indicating Controller Data				
GP/GLC/LT Data	No change to	Adding 0x1000 to	Adding 0x2000 to	Adding 0x3000 to	
	Address data	the Address	the Address	the Address	
1	1	0.1	0.01	0.001	
123	123	12.3	1.23	0.123	
1234	1234	123.4	12.34	1.234	


If the address designation method and the Indicating Controller data's decimal point position are not the same, the address' decimal data will be either cut off or replaced with "0".

Please refer to your RKC Instrument Inc. Indicating Controller installation guide for information about identifier data setting ranges and decimal point positions.

• Indicating Controller device address settings can be entered in your screen editor software. If a device address is not indicated, the previously entered device address is automatically used. (The default value is 0.)

■ Communication identifier list (CB Series)

Address	Identifier	Description
00	M1	Measured value (PV)
01	M2	Current transformer input 1
02	М3	Current transformer input 2
03	AA	Alarm 1 status
04	AB	Alarm 2 status
05	B1	Burnout
06	S1	Set value (SV)
07	A1	Alarm 1 setting
08	A2	Alarm 2 setting
09	A3	Heater break alarm 1 setting
0A	A4	Heater break alarm 2 setting
0B	A5	Control loop break alarm setting
0C	A6	LBA deadband
0D	G1	Autotuning (AT)
0E	G2	Self-tuning (ST)
0F	P1	Heat-side proportional band
10	l1	Integral time
11	D1	Derivative time
12	W1	Anti-reset windup
13	T0	Heat-side proportional cycle
14	P2	Cold-side proportional band
15	V1	Deadband
16	T1	Cold-side proportional cycle
17	PB	PV bias
18	LK	Set data lock function
19	RS	RUN/ST OP function
1A	ER	Error code
1B	10	Initialization mode selection
1C	IP	Setting necessary code [Cod]
1D	XI	Input type selection [SL1]
1E	XQ	Engineering unit and cooling type selection [SL2]
		Heater break alarm (HBA), control loop break alarm
1F	LV	(LBA),special specification, or control loop break
		alarm (LBA) output selection [SL3]

Address	Identifier	Description
20	VA	First alarm (ALM1) type or First alarm (ALM1) with
20	XA	hold action selection [SL4]
21	VD	Second alarm (ALM2) type or Second alarm (ALM2)
21	XB	with hold action selection [SL5]
22	CA	Control action type selection [SL6]
23	Z1	Energized/de-energized alarm selection, special
23	Z1	specification selection 1 [SL7]
24	Z2	Special specification selection 2 [SL8]
25	Z3	Special specification selection 3 [SL9]
26	DH	Option selection [SL10]
27	XC	SV alarm type selection [SL11]
28	XV	Setting limiter (high limit) [SLH]
29	XW	Setting limiter (low limit) [SLL]
2A	XU	Setting the position of decimal point [PGdP]
2B	MH	Differential gap setting of ON/OFF action [oH]
2C	HA	Differential gap setting of first alarm (ALM1) [AH1]
2D	НВ	Differential gap setting of second alarm (ALM2) [AH2]
2E	XR	CT ratio setting [CTr]
2F	F1	Digital filter setting [dF]
30	GH	Time factor assumed to be safe [STTM]
31	PU	Factor to calculate proportional band [STPK]
32	IU	Factor to calculate integral time [STIK]
33	IL	Integral time limiter [ILIM]
34	HP	Holding peak ambient temperature [TCJ]
35	UT	Operating time display unit (Upper digits) [WTH]
36	UU	Operating time display unit (Lower digits) [WTL]

■ Communication identifier list (REX-F Series)

	Communication identifier list (REA-F Series)			
Address	Identifier	Description		
00	M1	Measued-value (PV) input		
01	AA	First alarm output		
02	AB	Second alarm output		
03	AC	Heater break alarm outut		
04	01	Manipulated output (Heating-side)		
05	02	Manipulated output (Cooling-side)		
06	B1	Burnout		
07	B2	Feedback resistance (FBR) input burnout		
08	S2	Remote setting value (RS)		
09	M2	Feedback resistance input value (POS)		
0A	М3	Current transformer input value		
0B	MS	Set-value (SV) monitoring		
0C	J1	Auto/manual transfer		
0D	C1	Local/remote transfer		
0E	E1	Local/external memory area transfer		
0F	ZA	Control area No. transfer		
10	G1	PID control/auto-tuning transfer		
11	RA	Local mode/computer mode identification		
12	SR	Operation execution (RUN)/STOP transfer		
13	ON	Manipulated output value (MV)		
14	S1	Set-value (SV)		
15	A1	First alarm setting		
16	A2	Second alarm setting		
17	P1	Proportional band (Heating-side)		
18	I1	Integral time		
19	D1	Derivative time		
1A	CA	Control response designation parameter		
1B	P2	Cooling-side proportional band		
1C	V1	Deadband		
1D	НН	Setting change rate limit		
1E	PB	PVbias		
1F	F1	PV digital filter		
20	DP	PV low input cut-off		
21	RR	RS ratio		
22	RB	RS bias		
23	F2	RS digital filter		
24	ОН	Output limit (High limit)		
25	OL	Output limit (Low limit)		
26	OQ	Cooling output Min. ON time		
27	PH	Increase in output change rate limit		
28	PL	Decrease in output change rate limit		
	<u> </u>			

Address	Identifier	Description	
29	IV	Upper ON/OFF action (A) differential gap	
2A	IW	Lower ON/OFF action (A) differential gap	
2B	OE	Manual output at abnormality	
2C	GB	AT bias	
2D	HA	First alarm differential gap	
2E	TD	First alarm timer setting	
2F	A3	Heater break alarm	
30	НВ	Second alarm differential gap	
31	TG	Second alarm timer setting	
32	LA	Analog output (AO) Specification selection	
33	HV	Analog output (AO) Scale high limit	
34	HW	Analog output (AO) Scale low limit	
35	V2	Neutral zone	
36	VH	Open/close output differential gap	
37	SY	Action selection at feedback resistance (FBR) input	
31	31	break	
38	DA	Bar-graph display selection	
39	XI	PV input type selection	
3A	AV	Input abnormality determination point (High limit)	
3B	AW	Input abnormality determination point (Low limit)	
3C	WH	Action selection at input abnormality (High limit)	
3D	WL	Action selection at input abnormality (Low limit)	
3E	XV	Input programmable range (High limit)	
3F	XW	Input programmable range (Low limit)	
40	XU	Decimal-point position selection	
41	XH	Square root extraction selection	
42	SH	Setting limit (High limit)	
43	SL	Setting limit (Low limit)	
44	XR	RS input type selection	
45	XL	SV tracking selection	
46	T0	Proportioning cycle (Heating-side)	
47	T1	Cooling-side proportioning cycle	
48	XE	Direct/reverse action selection	
49	XN	Hot/cold start selection	
4A	SX	Start determination point	
4B	XA	First alarm Action selection	
4C	NA	First alarm Energized/de-energized selection	
4D	OA	First alarm Action selection at input abnormality	
4E	WA	First alarm Hold action selection	
4F	XB	Second alarm Action selection	

12.4 RKC INSTRUMENT INC. Controllers

Chapter 12 - Indicating Controllers

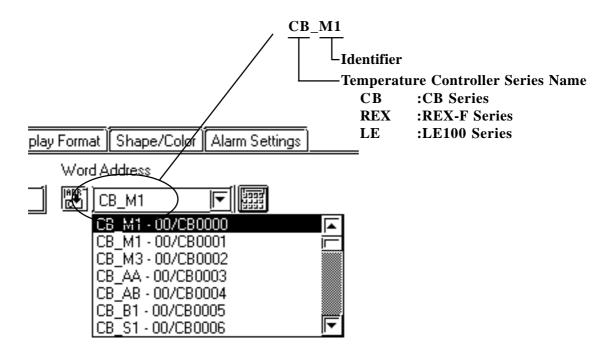
Address	Identifier	Description	
50	NB	Second alarm Energized/de-energized selection	
51	OB	Second alarm Action selection at input abnormality	
52	WB	Second alarm Hold action selection	
53	LK	Set data lock level	
54	LL	Area lock	
55	DH	Operation RUN/STOP display lock	

■ Communication identifier list (LE100 Series)

Address	ldentifier	Description
0	M1	Measured value (PV)
1	AA	Output 1 status
2	AB	Output 2 status
3	AC	Output 3 status
4	AD	Output 4 status
5	Æ	Output 5 status
6	AF	Output 6 status
7	AG	Output 7 status
8	AH	Output 8 status
9	B1	Burnout
0A	ER	Error code
0B~0D	ID	ID data
0E	MS	Specific gravity monitor
0F	ML	Scale low monitor
10	МН	Scale high monitor
11	HP	Peak hold monitor
12	HQ	Bottom hold monitor
13	MW	Number of water processing times monitor
14	MZ	Amount of emptiness correction monitor
15	A1	Output 1 set value
16	A2	Output 2 set value
17	A3	Output 3 set value
18	A4	Output 4 set value
19	A5	Output 5 set value
1A	A6	Output 6 set value
1B	A7	Output 7 set value
1C	A8	Output 8 set value
1D	A9	Actual liquid output setting
1E	AZ	Emptiness adjustment
1F	WT	Number of water processing times
20	CW	Initializing the number of water processing times
21	HR	Hold reset
22	IR	Interlock release
23	LK	Set data lock
24	IS	Default setting
25	EC	Error release
26	LU	Decimal point position selection
27	LT	Number of linearizing table setting

Chapter 12 - Indicating Controllers

Address	Identifier	Description
28	LO	Linearizing table setting 0
29	L1	Linearizing table setting 1
2A	L2	Linearizing table setting 2
2B	L3	Linearizing table setting 3
2C	L4	Linearizing table setting 4
2D	L5	Linearizing table setting 5
2E	L6	Linearizing table setting 5
2F	L7	Linearizing table setting 7
30	L8	Linearizing table setting 8
31	L9	<u> </u>
		Linearizing table setting 9
32	LA	Linearizing table setting 10
33	F1	Digital filter
34	XA	Output 1 type selection
35	DA	Output 1 deviation value setting
36	QA	Output 1 interlocking function selection
37	NA	Outut 1 a/b contact selection
38	HA	Output 1 defferential gap
39	TA	Output 1 timer setting
3A	XB	Output 2 type selection
3B	DB	Output 2 deviation value setting
3C	QB	Output 2 interlocking function selection
3D	NB	Output 2 a/b contact selection
3E	HB	Output 2 differential gap
3F	ТВ	Output 2 timer setting
40	XC	Output 3 type selection
41	DC	Output 3 deviation value setting
42	QC	Output 3 interlocking function selection
43	NC	Output 3 a/b contact selection
44	HC	Output 3 differential gap
45	TC	Output 3 timer setting
46	XD	Output 4 type selection
47	DD	Output 4 deviation value setting
48	QD	Output 4 interlocking function selection
49	ND	Output 4 a/b contact selection
4A	HD	Output 4 differential gap
4B	TD	Output 4 timer setting
4C	XE	Output 5 type selection
4D	DE	Output 5 deviation value setting
4E	QE	Output 5 interlocking function selection
4F	NE	Output 5 a/b contact selection
50	HE	Output 5 differential gap
51	TE	Output 5 timer setting
J1	1 -	Output o unior soluring


Address	Identifier	Description
52	XF	Output 6 type selection
53	DF	Output 6 deviation value setting
54	QF	Output 6 interlocking function selection
55	NF	Output 6 a/b contact selection
56	HF	Output 6 differential gap
57	TF	Output 6 timer setting
58	XG	Output 7 type selection
59	DG	Output 7 deviation value setting
5A	QG	Output 7 interlocking function selection
5B	NG	Output 7 a/b contact selection
5C	HG	Output 7 differential gap
5D	TG	Output 7 timer setting
5E	XH	Output 8 type selection
5F	DH	Output 8 deviation value setting
60	QH	Output 8 interlocking function selection
61	NH	Output 8 a/b contact selection
62	HH	Output 8 differential gap
63	TH	Output 8 timer setting
64	HV	Monitor output high
65	HW	Monitor output low
66	EG	End specific gravity setting
67	SW	Number of water processing times setting
68	XX	Scale low
69	SG	Specific gravity setting
6A	J1	Scale 1 actual liquid setting
6B	J2	Scale 2 actual liquid setting
6C	J3	Correction on the low limit side by actual liquid 2
6D	J4	Correction on the high limit side by actual liquid 2
6E	UN	Unit setting
6F	SP	Specific gravity setting transfer
70	SS	Specific gravity correction function selection
71	DS	DI function selection
72	MM	Volume/level display selection

When you register an identifier as a symbol, you can then select that identifier when setting up addresses. In this additional manual's CD-ROM is a sample symbol file of addresses registered for Unit No. 0. This sample file can be imported using the Symbol Editor. For information on how to use the Import feature, please refer to your screen editor's Operation Manual.

- Symbol File : RKCsymbol.lbe

After importing the symbol file, a pull-down list of registered symbols (identifiers) will appear when you click on the black triangle. (see below)

^{*} When using Sta. No. other than the sample file's Sta. No. 0, be sure to change the sample file's Sta. No. data.

12.4.4 Environment Setup

The following table lists Digital's recommended RKC INSTRUMENT INC. Controller and GP/GLC/LT communication settings.

■ **CB Series** (Modbus protocol)

GP/GLC/LT Settings		Controller Settings	
Baud Rate	9600bps	Baud Rate	9600bps
Data Length	7bits	Data Length	7bits
Stop Bit	2bits	Stop Bit	2bits
Parity Bit	odd	Parity Bit	odd
Data Flow Control	ER(Fixed)		
Communication Format	RS-422(2-wire)		
When using RS-422	R3-422(2-WIIE)		
Unit No.	1~32	Slave Address	1~32

 The Controller's slave address number range is from 0 to 99 for the CB Series units. (the data communication feature does not operate when it is set to "0".) Use only from 1 to 32 on the GP/ GLC/LT.

■ SR-Mini Series (Modbus protocol)

GP/GLC/LT Settings		Controller	Settings
Baud Rate	9600bps	Baud Rate	9600bps
Data Length	8bits	Data Length	8bits
Stop Bit	1bit	Stop Bit	1bit
Parity Bit	None	Parity Bit	None
Data Flow Control	ER(fixed)		
Communication Format When using RS-232C	RS-232C		
Communication Format When using RS-422	RS-422(4-wire)		
Unit No.	1~16	Slave Address	1~16

 The Controller's slave address number range is from 1 to 16 for the SR-Mini Series units. (the data communication feature does not operate when it is set to "0".) Use only from 1 to 16 on the GP/GLC/LT.

■ SRX/SRV Series (Modbus protocol)

GP/GLC/LT Settings		Controller Settings	
Baud Rate	9600bps	Baud Rate	9600bps
Data Length	8bits	Data Length	8bits (fixed)
Stop Bit	1bits		
Parity Bit	None	Parity Bit	None
Data Flow Control	ER(Fixed)		
Communication Format	2-wire		
Unit No.	1	Address Setting	1 *1
		Driver Slection	MODBUS
		Communication	6ms (Factory Setting)
		Switchover Time	, , , , , , , , , , , , , , , , , , ,
		Data Interval delay time	0ms (Factory Setting) *2

^{*1} When designating the controller's address, the actual address will be: actual address = address designated by the rotary switch + [1].

^{*2} When using the Baud Rate 38400bps, set the Data Intervel delay time to 1ms or higher.

 The Controller's slave address number range is from 0 to 100 for the CB Series units. (the data communication feature does not operate when it is set to "0".) Use only from 1 to 32 on the GP/ GLC/LT.

■ CB Series (RKC protocol)

GP/GLC/LT Settings		Controller Settings	
Baud Rate	9600bps	Baud Rate	9600bps
Data Length	8bits	Data Length	8bits
Stop Bit	1bit	Stop Bit	1bit
Parity Bit	None	Parity Bit	None
Data Flow Control	ER(fixed)		
Communication Format	RS-422(2-wire)		
When using RS-422	110-422(2-Wile)		
Unit No.	0~31	Device Address	0~31

• The Controller's device address number range is from 0 to 99 for the CB Series units. Use only from 0 to 31 on the GP/GLC/LT.

■ **REX-F Series** (RKC protocol)

GP/GLC/LT Settings		Controller Settings	
Baud Rate	9600bps	Baud Rate	9600bps
Data Length	7bits	DataLength	7bits
Stop Bit	2bits	Stop Bit	2bits
Parity Bit	odd	Parity Bit	odd
Data Flow Control	ER(Fixed)		
Communication Format When using RS-232C	RS-232C		
Communication Format	RS-422(4-wire)		
When using RS-422	RS-422(2-wire)		
Unit No.	0~31	Device Address	0~31

• The Controller's device address number range is from 0 to 99 for the REX-F Series units. Use only from 0 to 31 on the GP/GLC/LT.

■ LE100 Series (RKC protocol)

GP/GLC/LT Settings		Controller Settings	
Baud Rate	9600bps	Baud Rate	9600bps
Data Length	8bits	Data Length	8bits
Stop Bit	1bit	Stop Bit	1bit
Parity Bit	None	Parity Bit	None
Data Flow Control	ER(fixed)		
Communication Format	RS-422(2-wire)	iro) ——	
When using RS-422	110-422(2-WIIE)		
Unit No.	0~31	Device Address	0~31

• The Controller's device address number range is from 0 to 99 for the LE100 Series units. Use only from 0 to 31 on the GP/GLC/LT.

12.4.5 Error Codes

■Controller Error Codes

Error messages (Ex. Host communication error (02:**:##)) are displayed in the lower left corner of the GP/GLC/LT screen (** stands for an error code specific to the Controller).

Host Communication Error (02:**:##)

Device Address of Controller that has caused the error

Controller Error Code

Error Code	Description		
04	Occurs when a read out is performed from an address that cannot be		
	read from.		
15	Occurs when writing setting values that are outside of the allowed		
	range.		

A1

Maximum Number of Consecutive PLC Addresses

The following lists the maximum number of consecutive addresses that can be read by each PLC. Refer to these tables to utilize *Block Transfer*.

CB/REX-F/LE100 Series (RKC protocol)

Device	Max No. of Consecutive Addresses	
СВ		
REX	1 Word	
LE		

A2

Device Codes and Address Codes

Device codes and address codes are used to specify indirect addresses for E-tags and K-tags.

CB Series (RKC protocol)

Device	Word Address	Device Code	Address Code	
СВ	CB0000~	8000	Word Address	
	CB1000~	8200	Save as word address value	
	CB1000	0200	minus 0x100	
	CB2000~ 8400		Save as word address value	
			minus 0x200	
	CB3000~	8600	Save as word address value	
		0000	minus 0x300	

REX-F Series (RKC protocol)

Device	Word Address	Device Code Address Code		
REX	REX0000~	9000	Word Address	
	REX1000~	9200	Save as word address value	
	NEXT000°	9200	minus 0x100	
	REX2000~ 9400		Save as word address value	
	NEX2000	3400	minus 0x200	
	REX3000~	9600	Save as word address value	
		3000	minus 0x300	

LE100 Series (RKC protocol)

Device	Word Address	Device Code	Address Code	
LE	LE0000~	A000	Word Address	
	LE1000~	A200	Save as word address value	
	LL 1000 °	7200	minus 0x100	
	LE2000~	A400	Save as word address value	
	LLZ000	7400	minus 0x200	
	LE3000~ A600		Save as word address value	
LLS000		7,000	minus 0x300	

A3

Address Conversion Table

Refer to the following Address Conversion Table to convert addresses correctly.

O: When the selected conversion mode is [Word], both word and bit addresses are converted. When the [Bit] is selected, only bit addresses are converted.

		After Conversion			
		СВ	REX	LE	LS
Before Conversion	СВ	O	0	0	0
	REX	•	•	O	•
	LE	O	•	0	•
	LS	•	O	O	O